Choose from these sentences:

- Assume
0<|x-4|<\delta - Assume
|x-4|<\delta and| (x^2) - 16 | \leq \epsilon - There is no limit.
|x-4| | x+4 | < \frac{\epsilon}{10}(10) = \epsilon - Choose
\delta>0 so that\delta<\frac{\epsilon}{10} and\delta< 2 . - Then
|x-4|<\delta \delta < 2 \implies \\ 0 < x+4 < 8 + \delta < 8 + 2 - Therefore,
\displaystyle{\lim_{x \rightarrow 4} (x^2) = 16}. 8 - \delta < x+4 < 8 + \delta - Use Wolfram-Alpha to figure this out.
- Assume
| (x^2) - 16 | \leq \epsilon . - Suppose
\epsilon>0

Your Proof:

Choose from these sentences:

- Assume
0<|x-4|<\delta - Assume
|x-4|<\delta and| (x^2) - 16 | \leq \epsilon - There is no limit.
|x-4| | x+4 | < \frac{\epsilon}{10}(10) = \epsilon - Choose
\delta>0 so that\delta<\frac{\epsilon}{10} and\delta< 2 . - Then
|x-4|<\delta \delta < 2 \implies \\ 0 < x+4 < 8 + \delta < 8 + 2 - Therefore,
\displaystyle{\lim_{x \rightarrow 4} (x^2) = 16}. 8 - \delta < x+4 < 8 + \delta - Use Wolfram-Alpha to figure this out.
- Assume
| (x^2) - 16 | \leq \epsilon . - Suppose
\epsilon>0

Your Proof: