The matrix has eigenvalue $\lambda = -2$ repeated three times.

Find an $-2$-eigenvector for $\mathrm{A}$:

$\qquad \boldsymbol{\vec{v}} =$
 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\!\strut\\\end{array}}\right[$ $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\!\strut\\\end{array}}\right]$

Give a $\boldsymbol{\vec{v}}$-generalized $-2$-eigenvector:

$\qquad \boldsymbol{\vec{w}} =$
 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\!\strut\\\end{array}}\right[$ $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\!\strut\\\end{array}}\right]$

Give a $\boldsymbol{\vec{w}}$-generalized $\boldsymbol{\vec{v}}$-generalized $-2$-eigenvector:

$\qquad \boldsymbol{\vec{u}} =$
 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\!\strut\\\end{array}}\right[$ $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\!\strut\\\end{array}}\right]$

(To be counted correct, all three vectors must be entered and be consistent.)