Determine the following equivalent representations of the following system of equations:
a. Find the augmented matrix of the system.
$\left[\Rule{0pt}{2.4em}{0pt}\right.$$\left]\Rule{0pt}{2.4em}{0pt}\right.$
b. Find the matrix form of the system.
$\left[\Rule{0pt}{2.4em}{0pt}\right.$$\left]\Rule{0pt}{2.4em}{0pt}\right.$ $\left[\begin{array}{c} x\cr y\cr \end{array}\right] =$ $\left[\Rule{0pt}{2.4em}{0pt}\right.$$\left]\Rule{0pt}{2.4em}{0pt}\right.$
c. Find the inverse matrix form of the system.
$\left[\begin{array}{c} x\cr y\cr \end{array}\right] =$ $\left[\Rule{0pt}{2.4em}{0pt}\right.$$\left]\Rule{0pt}{2.4em}{0pt}\right.$ $\left[\begin{array}{c} -12\cr -49 \end{array}\right]$
d. Find the linear combination form of the system.
$x$ $\left[\Rule{0pt}{2.4em}{0pt}\right.$$\left]\Rule{0pt}{2.4em}{0pt}\right.$ $+ y$ $\left[\Rule{0pt}{2.4em}{0pt}\right.$$\left]\Rule{0pt}{2.4em}{0pt}\right.$ = $\left[\Rule{0pt}{2.4em}{0pt}\right.$$\left]\Rule{0pt}{2.4em}{0pt}\right.$
e. The graph below shows the lines determined by the two equations in our system:

Find the coordinates of
$P =$(,)
Find the coordinates of the y-intercept of the red line.
$A =$(0, )
Find the coordinates of the x-intercept of the green line.
$B =$(,0)

You can earn partial credit on this problem.