$f(x)$ $g(x)$

The graphs of $f(x)$ and $g(x)$ are given above. Use them to evaluate each quantity below. Write DNE if the limit or value does not exist (or if it's infinity).

1. $f(0)g(0)$
2. $\displaystyle \lim_{x\to 0^+} [f( g(x) ) ]$
3. $\displaystyle \lim_{x\to 0^-} [f(x)g(x) ]$
4. $\displaystyle \lim_{x\to 1^-} [f( g(x) ) ]$
5. $\displaystyle \lim_{x\to 0^+} [f(x)/g(x) ]$
6. $f(0)/g(0)$
7. $\displaystyle \lim_{x\to 1^-} [f(x)g(x) ]$
8. $\displaystyle \lim_{x\to 1^+} [f(x)/g(x) ]$
9. $\displaystyle \lim_{x\to 1^+} [f( g(x) ) ]$
10. $\displaystyle \lim_{x\to 1^+} [f(x)g(x) ]$
11. $\displaystyle \lim_{x\to 1^+} [f(x) + g(x) ]$
12. $f(0) + g(0)$
13. $\displaystyle \lim_{x\to 0^-} [f(x)/g(x) ]$
14. $\displaystyle \lim_{x\to 1^-} [f(x)/g(x) ]$
15. $f(1)g(1)$
16. $f(1) + g(1)$
17. $\displaystyle \lim_{x\to 0^+} [f(x)g(x) ]$
18. $\displaystyle \lim_{x\to 0^-} [f( g(x) ) ]$
19. $\displaystyle \lim_{x\to 0^-} [f(x) + g(x) ]$
20. $f( g(0) )$
21. $\displaystyle \lim_{x\to 1^-} [f(x) + g(x) ]$
22. $f(1)/g(1)$
23. $f( g(1) )$
24. $\displaystyle \lim_{x\to 0^+} [f(x) + g(x) ]$

You can earn partial credit on this problem.