Determine if $v$ is an eigenvector of the matrix $A$.

1.

$A =$
 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\end{array}}\right[$ 13 -12 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\end{array}}\right]$ 18 -17
, $v=$
 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\end{array}}\right[$ 5 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\end{array}}\right]$ 2

2.

$A =$
 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\end{array}}\right[$ -6 -7 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\end{array}}\right]$ 14 15
, $v=$
 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\end{array}}\right[$ -1 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\end{array}}\right]$ 2

3.

$A =$
 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\end{array}}\right[$ -26 16 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\end{array}}\right]$ -48 30
, $v=$
 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\end{array}}\right[$ 1 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\end{array}}\right]$ 2

You can earn partial credit on this problem.