Given $v=$
 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\!\strut\\\!\strut\\\end{array}}\right[$ 17 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\!\strut\\\!\strut\\\end{array}}\right]$ 1 11 -28
,
find the coordinates for $v$ in the subspace $W$ spanned by
$u_{1}=$
 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\!\strut\\\!\strut\\\end{array}}\right[$ -3 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\!\strut\\\!\strut\\\end{array}}\right]$ -2 1 0
, $u_{2}=$
 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\!\strut\\\!\strut\\\end{array}}\right[$ 1 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\!\strut\\\!\strut\\\end{array}}\right]$ 0 3 1
and $u_{3}=$
 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\!\strut\\\!\strut\\\end{array}}\right[$ -6 $\left.\vphantom{\begin{array}{c}\!\strut\\\!\strut\\\!\strut\\\!\strut\\\!\strut\\\end{array}}\right]$ 5 -8 30
.
Note that $u_{1}$, $u_{2}$ and $u_{3}$ are orthogonal.

$v=$ $u_{1}+$ $u_{2}+$ $u_{3}$

You can earn partial credit on this problem.