Match the following series with the series below in which you can compare using the Limit Comparison Test. Then determine whether the series converge or diverge.
** A. ** \displaystyle \sum_{n=1}^{\infty}\frac{1}{n} ,
** B. ** \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^2} ,
** C. ** \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^3} , and
** D. ** \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^{3/2}}

** 1. ** \displaystyle \sum_{n=1}^{\infty}\frac{1}{\sqrt{n^{3}+1}} Does this series converge or diverge?
?
Converges
Diverges

** 2. **

** 3. **

** 4. **

In order to get credit for this problem all answers must be correct.