Let
\mathbf{u} = \begin{bmatrix}
2 + 6i \\
8 + 5i \\
4 + 6i \\
7 + 6i \\
2 + 5i \\
7 + 4i
\end{bmatrix}
\text{ and }
\mathbf{v} = \begin{bmatrix}
2 + 7i \\
2 + 7i \\
4 + 7i \\
2 + 5i \\
7 + 8i \\
6 + 7i
\end{bmatrix}.
Find each of the following products:

\overline{ 2 + 6i} ( 2 + 7i ) =

\overline{ 8 + 5i} ( 2 + 7i ) =

\overline{ 4 + 6i} ( 4 + 7i ) =

\overline{ 7 + 6i} ( 2 + 5i ) =

\overline{ 2 + 5i} ( 7 + 8i ) =

\overline{ 7 + 4i} ( 6 + 7i ) =

Now, find the (Hermitian) inner product

Answer:

You can earn partial credit on this problem.