This problem tests calculating new functions from old ones:
From the table below calculate the quantities asked for:
\(x\) \(2\)\(-5\)\(-2\)\(4\)\(-1\)\(10\)
\(f(x)\) \(-5\)\(184\)\(19\)\(-41\)\(4\)\(-821\)
\(g(x)\) \(10\)\(-130\)\(-10\)\(68\)\(-2\)\(1010\)
\(f'(x)\) \(-6\)\(-97\)\(-22\)\(-34\)\(-9\)\(-262\)
\(g'(x)\) \(13\)\(76\)\(13\)\(49\)\(4\)\(301\)

\(f(-1)/( g(-1) +5)\)
\((fg)(2)\)
\((f+g)'(-1)\)
\((f/g)'(-1)\)
If \(h(x)=g(f(x))\), calculate \(h'(2)\).

You can earn partial credit on this problem.