This problem tests calculating new functions from old ones:
From the table below calculate the quantities asked for:
\(x\) \(-1\)\(4\)\(-2\)\(-5\)\(10\)\(2\)
\(f(x)\) \(4\)\(-41\)\(19\)\(184\)\(-821\)\(-5\)
\(g(x)\) \(-2\)\(68\)\(-10\)\(-130\)\(1010\)\(10\)
\(f'(x)\) \(-9\)\(-34\)\(-22\)\(-97\)\(-262\)\(-6\)
\(g'(x)\) \(4\)\(49\)\(13\)\(76\)\(301\)\(13\)

\(f(-1)/( g(-1) +5)\)
\((fg)(2)\)
\((f+g)'(-1)\)
\((f/g)'(-1)\)
If \(h(x)=g(f(x))\), calculate \(h'(2)\).

You can earn partial credit on this problem.